Durability of an UHPFRC under mechanical and chloride loads

More Info
expand_more

Abstract

The high cost of UHPFRC is a limitation on the practical application in real construction projects. However, a very competitive UHPFRC approach is the hybrid structural elements, where thin layers of UHPFRC are employed to rehabilitate/strengthen damage cover concrete. New layers subjected to harsh conditions (loads and/or environmental) can eventually crack under service conditions, changing the local transport properties and thus, a faster ingress of detrimental substances occur, such as chlorides ions. Most of the studies on chloride penetration in UHPFRC have focused on determining the transport properties of sound, non-cracked specimens. Thus, an experimental campaign was carried out to assess chloride ingress in loaded and/or cracked UHPFRC and the effect of such ions on mechanical performance. Typical service cracks patterns were imposed on UHPFRC specimens and then exposed to wetting–drying cycles in a chloride solution. After 1-year chloride exposure, UHPFRC specimens were in good condition with no significant losses in flexural strength; however, stiffness might be affected. The chloride contents up to 20 mm depth were superior to the European standards critical chloride content. A minimum cover depth of 20 mm of new UHPFRC is recommended to protect a concrete substrate in hybrid structures for exposure classes XS3.

Files

1_s2.0_S0950061821029664_main.... (pdf)
(pdf | 19.7 Mb)
- Embargo expired in 28-04-2022
Unknown license