A parametric method for submerged floating tunnel cross-section design
More Info
expand_more
expand_more
Abstract
A submerged floating tunnel’s (SFT) cross-sectional geometry is one of the main factors influencing its hydrodynamic characteristics. Minimizing the drag and lift is important for reducing the displacement of the structure and load on the mooring system. In this study, a parametric cross-section design method based on the Bézier curve is used to define the geometry of the SFT cross-section. A sensitivity analysis of the Bézier curve parameters is conducted with Computational Fluid Dynamics (CFD), and compared with simpler common cross-sections. The results show the parametric design method noticeably reduces the mean drag and RMS lift coefficient, compared with simpler common sections.