Separable Autoregressive Moving Average Graph-Temporal Filters
More Info
expand_more
expand_more
Abstract
Despite their widespread use for the analysis of graph data, current graph filters are designed for graph signals that do not change over time, and thus they cannot simultaneously process time and graph frequency content in an adequate manner. This work presents ARMA2D, an autoregressive moving average graph-temporal filter that captures jointly the signal variations over the graph and time. By its unique nature, this filter is able to achieve a separable 2-dimensional frequency response, making it possible to approximate the filtering specifications along both the graph and temporal frequency domains. Numerical results show that the proposed solution outperforms the state of the art graph filters when the graph signal is time-varying.