Numerical study of wheel-rail impact contact solutions at an insulated rail joint
More Info
expand_more
Abstract
This paper presents an analysis of the transient contact solutions of wheel-rail frictional rolling impacts calculated by an explicit finite element model of the wheel-insulated rail joint (IRJ) dynamic interaction. The ability of the model to simulate the dynamic behavior of an IRJ has been validated against a comprehensive field measurement in a recent paper (Yang et al., 2018). In addition to the measured railhead geometry and bi-linear elastoplastic material model used in Yang et al. (2018), this study adopts a nominal railhead geometry and an elastic material model for the simulations to provide an overall understanding of the transient contact behavior of wheel-IRJ impacts. Each simulation calculates the evolution of the contact patch area, stress magnitude and direction, micro-slip distribution, and railhead nodal vibration velocity in the vicinity of the joint during the wheel-IRJ impacts. The simulations apply small computational and output time steps to capture the high-frequency dynamic effects at the wheel-IRJ impact contact. Regular wave patterns that indicate wave generation, propagation and reflection are produced by the simulations; this has rarely been reported in previous research. The simulated waves reflect continuum vibrations excited by wheel-rail frictional rolling and indicate that the simulated impact contact solutions are reliable.