Exploring users' perception of rating summary statistics

More Info
expand_more

Abstract

Collaborative filtering systems heavily depend on user feedback expressed in product ratings to select and rank items to recommend. These summary statistics of rating values carry two important descriptors about the assessed items, namely the total number of ratings and the mean rating value. In this study we explore how these two signals influence the decisions of online users based on choice-based conjoint experiments. Results show that users are more inclined to follow the mean indicator as opposed to the total number of ratings. Empirical results can serve as an input to developing algorithms that foster items with a, consequently, higher probability of choice based on their rating summarizations or their it explainability due to these ratings when ranking recommendations.

Files

P353_coba.pdf
(pdf | 0.949 Mb)
Unknown license