Unpacking Human-AI interactions
From Interaction Primitives to a Design Space
More Info
expand_more
Abstract
This article aims to develop a semi-formal representation for Human-AI (HAI) interactions, by building a set of interaction primitives which can specify the information exchanges between users and AI systems during their interaction. We show how these primitives can be combined into a set of interaction patterns which can capture common interactions between humans and AI/ML models. The motivation behind this is twofold: firstly, to provide a compact generalization of existing practices for the design and implementation of HAI interactions; and secondly, to support the creation of new interactions by extending the design space of HAI interactions. Taking into consideration frameworks, guidelines, and taxonomies related to human-centered design and implementation of AI systems, we define a vocabulary for describing information exchanges based on the model’s characteristics and interactional capabilities. Based on this vocabulary, a message passing model for interactions between humans and models is presented, which we demonstrate can account for existing HAI interaction systems and approaches. Finally, we build this into design patterns which can describe common interactions between users and models, and we discuss how this approach can be used toward a design space for HAI interactions that creates new possibilities for designs as well as keeping track of implementation issues and concerns.