HV

H.J. Vos

105 records found

Objective: Assessing myocardial perfusion in acute myocardial infarction is important for guiding clinicians in choosing appropriate treatment strategies. Echocardiography can be used due to its direct feedback and bedside nature, but it currently faces image quality issues and a ...
This article presents a 4096-element ultrasound probe for high volume-rate (HVR) cardiovascular imaging. The probe consists of two application-specific integrated circuits (ASICs), each of which interfaces with a 2048-element monolithically-integrated capacitive micro-machined ul ...
The accurate determination of the transfer function of ultrasound transducers is important for their design and operational performance. However, conventional methods for quantifying the transfer function, such as hydrophone measurements, radiation force balance, and pulse-echo m ...
Objective: Post-operative brain injury in neonates may result from disturbed cerebral perfusion, but accurate peri-operative monitoring is lacking. High-frame-rate (HFR) cerebral ultrasound could visualize and quantify flow in all detectable vessels using spectral Doppler; howeve ...
This article presents an application-specific integrated circuit (ASIC) for catheter-based 3-D ultrasound imaging probes. The pitch-matched design implements a comprehensive architecture with high-voltage (HV) transmitters, analog front ends, hybrid beamforming analog-To-digital ...
This article presents a pitch-matched transceiver application-specific integrated circuit (ASIC) for a wearable ultrasound device intended for transfontanelle ultrasonography, which includes element-level 20-V unipolar pulsers with transmit (TX) beamforming, and receive (RX) circ ...
Objective: Described here is the development of an ultrasound matrix transducer prototype for high-frame-rate 3-D intra-cardiac echocardiography. Methods: The matrix array consists of 16 × 18 lead zirconate titanate elements with a pitch of 160 µm × 160 µm built on top of an appl ...
Assessing the coronary circulation with contrast-enhanced echocardiography has high clinical relevance. However, it is not being routinely performed in clinical practice because the current clinical tools generally cannot provide adequate image quality. The contrast agent's visib ...
Volumetric echocardiography can potentially give a more complete picture of cardiac dynamics than its two-dimensional (2D) counterpart. Current clinical volumetric imaging probes have relatively low frame rates, and often require ECG gating to stitch together an entire volume. Th ...
Objective: The aim of this study was to assess the feasibility and imaging options of contrast-enhanced volumetric ultrasound kidney vasculature imaging in a porcine model using a prototype sparse spiral array. Methods: Transcutaneous freehand in vivo imaging of two healthy porci ...
This article presents a low-power and small-area transceiver application-specific integrated circuit (ASIC) for 3-D trans-fontanelle ultrasonography. A novel micro-beamforming receiver architecture that employs current-mode summation and boxcar integration is used to realize dela ...
This paper presents a pitch-matched transceiver ASIC integrated with a 2-D transducer array for a wearable ultrasound device for transfontanelle ultrasonography. The ASIC combines 8-fold multiplexing, 4-channel micro-beamforming (μ BF) and sub-array-level digitization to achieve ...
Ultrasound-based shear wave elastography is a promising technique to non-invasively assess the dynamic stiffness variations of the heart. The technique is based on tracking the propagation of acoustically induced shear waves in the myocardium of which the propagation speed is lin ...
Superheated nanodroplet (ND) vaporization by proton radiation was recently demonstrated, opening the door to ultrasound-based in vivo proton range verification. However, at body temperature and physiological pressures, perfluorobutane nanodroplets (PFB-NDs), which offer a good co ...
High frame rate three-dimensional (3D) ultrasound imaging would offer excellent possibilities for the accurate assessment of carotid artery diseases. This calls for a matrix transducer with a large aperture and a vast number of elements. Such a matrix transducer should be interfa ...

In this letter, a compact high-voltage (HV) transmit circuit for dense 2-D transducer arrays used in 3-D ultrasonic imaging systems is presented. Stringent area requirements are addressed by a unipolar pulser with embedded transmit/receive switch. Combined wi ...

3-D contrast enhanced ultrasound enables better visualization of inherently 3-D vascular geometries compared to an intersecting plane. Additionally, it would allow the application of motion correction techniques for all directions. Both contrast detection and motion correction wo ...
Intra-cardiac echography (ICE) probes (Fig. 32.2.1) are widely used in electrophysiology for their good procedure guidance and relatively safe application. ASICs are increasingly employed in these miniature probes to enhance signal quality and reduce the number of connections nee ...
This work describes an ASIC design for high-frame-rate 3D intracardiac echocardiography probes. The chip is the first to combine element-level high-voltage pulsers and time-gain-compensation analog frontends as well as subarray beamformers and in-probe digitization in a pitch-mat ...
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is normally treated by RF ablation. Intracardiac echography (ICE) is widely employed during RF ablation procedures to guide the electrophysiologist in navigating the ablation catheter, although only 2-D probes are ...