The pinning-controlled mobility of ferroelectric/ferroelastic domain walls is an important part of managing polarization switching and determining the final properties of ferroelectric and piezoelectric materials. Here, we assess the impact of temperature on dislocation-induced d
...
The pinning-controlled mobility of ferroelectric/ferroelastic domain walls is an important part of managing polarization switching and determining the final properties of ferroelectric and piezoelectric materials. Here, we assess the impact of temperature on dislocation-induced domain wall pinning as well as on dislocation-tuned dielectric and piezoelectric response in barium titanate single crystals. Our solid-state nuclear magnetic resonance spectroscopy results indicate that the entire sample exclusively permits in-plane domains, with their distribution remaining insensitive to temperature changes below the Curie temperature (TC). The domain wall pinning field monotonically decreases with increasing temperature up to TC, as evidenced by a combination of experimental observations and phase-field simulations. Our work highlights the promising potential of dislocation engineering in controlling domain wall mobility within bulk ferroelectrics.
@en