XJ

Xiaotao Jia

3 records found

The robustness of Bayesian neural networks (BNNs) to real-world uncertainties and incompleteness has led to their application in some safety-critical fields. However, evaluating uncertainty during BNN inference requires repeated sampling and feed-forward computing, making them ch ...
Bayesian neural network (BNN) has gradually attracted researchers' attention with its uncertainty representation and high robustness. However, high computational complexity, large number of sampling operations, and the von-Neumann architecture make a great limitation for the furt ...
The Bayesian method is capable of capturing real-world uncertainties/incompleteness and properly addressing the overfitting issue faced by deep neural networks. In recent years, Bayesian neural networks (BNNs) have drawn tremendous attention to artificial intelligence (AI) resear ...