Many problems in robotics involve multiple decision making agents. To operate efficiently in such settings, a robot must reason about the impact of its decisions on the behavior of other agents. Differential games offer an expressive theoretical framework for formulating these ty
...
Many problems in robotics involve multiple decision making agents. To operate efficiently in such settings, a robot must reason about the impact of its decisions on the behavior of other agents. Differential games offer an expressive theoretical framework for formulating these types of multi-agent problems. Unfortunately, most numerical solution techniques scale poorly with state dimension and are rarely used in real-time applications. For this reason, it is common to predict the future decisions of other agents and solve the resulting decoupled, i.e., single-agent, optimal control problem. This decoupling neglects the underlying interactive nature of the problem; however, efficient solution techniques do exist for broad classes of optimal control problems. We take inspiration from one such technique, the iterative linear-quadratic regulator (ILQR), which solves repeated approximations with linear dynamics and quadratic costs. Similarly, our proposed algorithm solves repeated linear-quadratic games. We experimentally benchmark our algorithm in several examples with a variety of initial conditions and show that the resulting strategies exhibit complex interactive behavior. Our results indicate that our algorithm converges reliably and runs in real-time. In a three-player, 14-state simulated intersection problem, our algorithm initially converges in < 0.25 s. Receding horizon invocations converge in < 50 ms in a hardware collision-avoidance test.
@en