TM

T.R. Mahon

8 records found

Bismuth ferrite is a potentially interesting lead-free piezoelectric material for use in high-temperature applications due to its high Curie temperature. However, the high coercive field and high leakage currents of pure BiFeO3 (BFO) prevent reaching its theoretical performance l ...
In this work, we present the impact of using Na2CO3 as a sintering aid and grain growth agent on the crystal structure, microstructure, and piezoelectric properties of (Bi0.5Na0.5)TiO3 ceramics. The addition of Na2 ...
BiFeO3 is an interesting multiferroic material with potential use in sensors and transducers. However, the high coercive field and low dielectric strength of this material make the poling process extremely difficult. Poling becomes a lot easier if the ceramic particles ...
A new concept of the formation of charge transfer (CT) complexes between an intrinsically electron-donating conjugated microporous polymer and a small molecule acceptor is reported. Spirobifluorene-based mesoporous organic polymers with high porosity and Brunauer–Emmett–Teller su ...
While most of the work on piezoelectric composites focuses on methods to reduce the dielectric constant of the composite (for better sensor and energy harvesting performance), for haptic feedback and actuator applications the opposite is desirable. We present here a study of the ...
BiFeO3 is a multiferroic material with the perovskite structure which is promising for use in sensors and transducers. Single phase production of BiFeO3 remains a challenge, however. In this study, the optimal calcination temperature to obtain close to singl ...
Polymer-piezoceramic composites have drawn a lot of attention for sensor and energy harvesting applications. Poling such materials can be difficult due to the electric field getting mostly distributed over the low dielectric constant matrix. During this process, the electrical ma ...