IW
Ive Weygers
6 records found
1
Real-time motion tracking of kinematic chains is a key prerequisite in the control of, e.g., robotic actuators and autonomous vehicles and also has numerous biomechanical applications. In recent years, it has been shown that, by placing inertial sensors on segments that are conne
...
A major shortcoming in kinematic estimation using skin-attached inertial sensors is the alignment of sensor-embedded and segment-embedded coordinate systems. Only a correct alignment results in clinically relevant kinematics. Model-based inertial-sensor-to-bone alignment methods
...
We present a novel approach to estimate the relative sensor orientation from inertial sensors placed on connected body segments. Drift in the relative orientation estimates obtained by integrating the gyroscope measurements is corrected solely by incorporating common information
...
Skin-attached inertial sensors are increasingly used for kinematic analysis. However, their ability to measure outside-lab can only be exploited after correctly aligning the sensor axes with the underlying anatomical axes. Emerging model-based inertial-sensor-to-bone alignment me
...
The ability to capture joint kinematics in outside-laboratory environments is clinically relevant. In order to estimate kinematics, inertial measurement units can be attached to body segments and their absolute orientations can be estimated. However, the heading part of such orie
...
Inertial Sensor-Based Lower Limb Joint Kinematics
A Methodological Systematic Review
The use of inertial measurement units (IMUs) has gained popularity for the estimation of lower limb kinematics. However, implementations in clinical practice are still lacking. The aim of this review is twofold-to evaluate the methodological requirements for IMU-based joint kinem
...