Motivated by the lack of response-time analyses for non-preemptive global scheduling that consider shared resources, this paper provides such an analysis for global job-level fixed-priority (JLFP) scheduling policies and FIFO-ordered spin locks. The proposed analysis computes res
...
Motivated by the lack of response-time analyses for non-preemptive global scheduling that consider shared resources, this paper provides such an analysis for global job-level fixed-priority (JLFP) scheduling policies and FIFO-ordered spin locks. The proposed analysis computes response-time bounds for a set of resource-sharing jobs subject to release jitter and execution-time uncertainties by implicitly exploring all possible execution scenarios using state-abstraction and state-pruning techniques. A large-scale empirical evaluation of the proposed analysis shows it to be substantially less pessimistic than simple execution-time inflation methods, thanks to the explicit modeling of contention for shared resources and scenario-aware blocking analysis.
@en