This paper presents a TriMedia processor extended with an IDCT reconfigurable design, and assesses the performance gain such an extension has when performing MPEG-2 decoding. We first propose the skeleton of an extension of the TriMedia architecture, which consists of a Field-Pro
...
This paper presents a TriMedia processor extended with an IDCT reconfigurable design, and assesses the performance gain such an extension has when performing MPEG-2 decoding. We first propose the skeleton of an extension of the TriMedia architecture, which consists of a Field-Programmable Gate Array (FPGA)-based Reconfigurable Functional Unit (RFU), a Configuration Unit managing the reconfiguration of the RFU, and their associated instructions. Then, we address the computation of the 8 × 8 (2-D) IDCT on such extended TriMedia and propose a scheme to implement the 1-D IDCT operation on the RFU. When mapped on an ACEX EP1K100 FPGA from Altera, the proposed 1-D IDCT exhibits a latency of 16 and a recovery of 2 TriMedia@200 MHz cycles, and occupies 45% of the logic cells of the device. By configuring the 1-D IDCT on the RFU at application launch-time, the IEEE-compliant 2-D IDCT can be computed with the throughput of 1/32 IDCT/cycle. This figure translates to an improvement over the standard TriMedia of more than 40% in terms of computing time when 2-D IDCT is carried out in the framework of MPEG-2 decoding. Finally, the proposed reconfigurable IDCT is compared to a number of existing designs.
Keywords configurable computing - VLIW processor - field-programmable gate array - inverse discrete cosine transform@en