We present an isogeometric method for Kirchhoff–Love shell analysis of shell structures with geometries composed of multiple patches and which possibly possess extraordinary vertices, i.e. vertices with a valency different to four. The proposed isogeometric shell discretisation i
...
We present an isogeometric method for Kirchhoff–Love shell analysis of shell structures with geometries composed of multiple patches and which possibly possess extraordinary vertices, i.e. vertices with a valency different to four. The proposed isogeometric shell discretisation is based on the one hand on the approximation of the mid-surface by a particular class of multi-patch surfaces, called analysis-suitable G1 (Collin et al., 2016), and on the other hand on the use of the globally C1-smooth isogeometric multi-patch spline space (Farahat et al., 2023). We use our developed technique within an isogeometric Kirchhoff–Love shell formulation (Kiendl et al., 2009) to study linear and non-linear shell problems on multi-patch structures. Thereby, the numerical results show the great potential of our method for efficient shell analysis of geometrically complex multi-patch structures which cannot be modelled without the use of extraordinary vertices.
@en