AT
A. Turon
9 records found
1
This work evaluates the ability of cohesive zone modeling-based approaches to predict delamination in composite materials that develop large process zones under complex loading conditions. The R-curve effects subjected to static and fatigue loading under multiple loading modes, c
...
The main objective of this paper is to present a delamination benchmark test concept for composite materials that develop non-self-similar delamination in characterization specimens. The non-self-similar delamination is induced by rotating the loading blocks. The simplicity of th
...
Thermoplastic composite welding is a key technology that can help to make the aviation industry more sustainable, while at the same time enable high-volume production and cost-efficient manufacturing. In this work, characterization, testing and analysis of thermoplastic composite
...
The complex failure mechanisms involved in failure of interfaces requires the use of an accurate description of the cohesive law. In recent years, there have been many developments to determine the full shape of the cohesive law. However, most of the existing cohesive zone models
...
Through the application of innovative production processes, thermoplastic composites might help the aviation industry become more sustainable. However, there is currently not much experimental understanding on the fatigue behaviour, and validated analysis methodologies on thermop
...
The work presented in this paper investigates the ability of continuum damage models to accurately predict matrix failure and ply splitting. Two continuum damage model approaches are implemented that use different stress–strain measures. The first approach is based on small-strai
...
The capability of joining two thermoplastic composite parts by welding is a key technology to reduce the weight and cost of assembled parts and enables high volume manufacturing of future aeronautical structures made of thermoplastic composite materials. However, there is not muc
...
Thermoplastic composites can enable the development of new manufacturing techniques to make the aviation industry more sustainable while at the same time greatly benefit cost-efficient and high-volume production. One of the thermoplastic composite materials that can enable this t
...
Virtual testing of thermoplastic composites
Towards a hybrid simulation-physical testing pyramid
This paper summarizes the implementation of a Virtual Testing methodology in an industrial environment to predict the mechanical behaviour of composite material through the different scales of the conventional physical testing pyramid. A robust Virtual Test Lab allows for the gen
...