Climate change poses a serious threat to ecosystems and increases the need for accurate and rigorous monitoring of ecosystems. Current monitoring solutions are often bulky, expensive, and lack critical functionalities such as on-board inference capabilities, robust wireless conne
...
Climate change poses a serious threat to ecosystems and increases the need for accurate and rigorous monitoring of ecosystems. Current monitoring solutions are often bulky, expensive, and lack critical functionalities such as on-board inference capabilities, robust wireless connections, and a diverse sensor suite. Ecological monitoring projects often suffer from inefficiencies caused by the large time delays between collecting data and analyzing said data, as well as having to spend large amounts of time in the field setting up the sensors manually. This thesis addresses many of these issues by designing a sensor with an extensive sensor suite, robust wireless capabilities and an on-board audio classifier able to perform real-time inference. Furthermore, attention is paid to making the system extendable in the future and allow for potentially integrating the sensors with a drone delivery- and retrieval system. The system tests performed indicate that the system has great potential given more time to tweak some of its identified shortcomings.