DK

Dennis M. Kochmann

12 records found

This study demonstrates that two- and three-dimensional spatially graded, truss-based polymeric-material metamaterials can be designed for beneficial impact mitigation and energy absorption capabilities. Through a combination of numerical and experimental techniques, we highlight ...

HyperCAN

Hypernetwork-driven deep parameterized constitutive models for metamaterials

We introduce HyperCAN, a machine learning framework that utilizes hypernetworks to construct adaptable constitutive artificial neural networks for a wide range of beam-based metamaterials exhibiting diverse mechanical behavior under finite deformations. HyperCAN integrates an inp ...
Natural porous materials have exceptional properties—for example, light weight, mechanical resilience, and multi-functionality. Efforts to imitate their properties in engineered structures have limited success. This, in part, is caused by the complexity of multi-phase materials c ...
Although architected materials based on truss networks have been shown to possess advantageous or extreme mechanical properties, those can be highly affected by tolerances and uncertainties in the manufacturing process, which are usually neglected during the design phase. Determi ...
The rise of machine learning has fueled the discovery of new materials and, especially, metamaterials—truss lattices being their most prominent class. While their tailorable properties have been explored extensively, the design of truss-based metamaterials has remained highly lim ...
Inspired by crystallography, the periodic assembly of trusses into architected materials has enjoyed popularity for more than a decade and produced countless cellular structures with beneficial mechanical properties. Despite the successful and steady enrichment of the truss desig ...
Deciding whether a given function is quasiconvex is generally a difficult task. Here, we discuss a number of numerical approaches that can be used in the search for a counterexample to the quasiconvexity of a given function W. We will demonstrate these methods using the planar is ...
We present a two-scale topology optimization framework for the design of macroscopic bodies with an optimized elastic response, which is achieved by means of a spatially-variant cellular architecture on the microscale. The chosen spinodoid topology for the cellular network on the ...
Microstructural patterns emerge ubiquitously during phase transformations, deformation twinning, or crystal plasticity. Challenges are the prediction of such microstructural patterns and the resulting effective material behavior. Mathematically, the experimentally observed patter ...
Severe plastic deformation (SPD), occurring ubiquitously across metal forming processes, has been utilized to significantly improve bulk material properties such as the strength of metals. The latter is achieved by ultra-fine grain refinement at the polycrystalline mesoscale via ...
After a decade of periodic truss-, plate-, and shell-based architectures having dominated the design of metamaterials, we introduce the non-periodic class of spinodoid topologies. Inspired by natural self-assembly processes, spinodoid metamaterials are a close approximation of mi ...
We introduce an improved meshfree approximation scheme which is based on the local maximum-entropy strategy as a compromise between shape function locality and entropy in an information-theoretical sense. The improved version is specifically designed for severe, finite deformatio ...