BG
B. Gunes
8 records found
1
In this paper, we present a novel multiple input multiple output (MIMO) linear parameter varying (LPV) state-space refinement system identification algorithm that uses tensor networks. Its novelty mainly lies in representing the LPV sub-Markov parameters, data and state-revealing
...
Linear Parameter Varying (LPV) subspace identification methods suffer from an exponential growth in number of parameters to estimate. This results in problems with ill-conditioning. In literature, attempts have been made to address the ill-conditioning by using regularization. It
...
The major bottleneck in state-of-the-art Linear Parameter Varying (LPV) subspace methods is the curse-of-dimensionality during the first regression step. In this paper, the origin of the curse-of-dimensionality is pinpointed and subsequently a novel method is proposed which does
...
With advancing technology, systems are becoming increasingly interconnected and form more complex networks. Additionally, more measurements are available from systems due to cheaper sensors. Hence there is a need for identification methods specifically designed for networks. For
...