LN

L. Nicola

54 records found

The Maugis analysis is applied to adhesive contact between a cylinder with various wave profiles and a semi-infinite, elastic half-plane. We extend the analysis of Waters, Lee and Guduru, who consider the adhesive contact of a Hertzian indenter on a semi-infinite, elastic half-sp ...
The small-scale topography of surfaces critically affects the contact area of solids and thus the forces acting between them. Although this has long been known, only recent advances made it possible to reliably model interfacial forces and related quantities for surfaces with mul ...
The effect of the presence of a passivation layer on a metal rough surface during contact loading is investigated by means of dislocation dynamics simulations. The metal body is modeled as an FCC single crystal with a self-affine rough surface that is either bare, or covered by a ...
Viscoelasticity and roughness are among the possible causes of the adhesive hysteresis displayed by soft contacts. Viscoelasticity causes an increased effective work of adhesion due to stiffening of the contact, while roughness is responsible for elastic instabilities. Herein, we ...
A seamless 2D dual-scale computational scheme is developed to study contact problems. The model consists of an atomistic domain close to the contact, coupled with an elastic continuum domain away from the contact. The atomistic formulation provides a description of the contact in ...
The oscillation of a graphene flake on a substrate with undulated surface is investigated by classical molecular dynamics simulation. The gradient in amplitude of the undulation is found to provide the driving force for the motion of the graphene flake, which slides on top of a g ...
Discrete dislocation plasticity is a modeling technique that treats plasticity as the collective motion of dislocations. The dislocations are described through their elastic Volterra fields, outside of a cylindrical core region, with a few Burgers vectors of diameter. The contrib ...
It has been demonstrated through experiments and simulations that friction decreases significantly when graphene is used as a solid lubricant on various materials. However, the effect of increasing the number of graphene layers on lubrication is controversial. Some studies predic ...
Contact between elastic bodies with self-affine rough surfaces is mostly studied with a focus on determining surface fields, despite body fields are of great importance to establish, for instance, when and where elasticity breaks down. This work aims at analyzing the effect of co ...
A model is proposed herein to investigate the incipient sliding of contacts in the presence of both friction and adhesion, where the interfacial response is modeled based on traction-separation laws. A Maugis-like parameter is defined to characterize the response in the tangentia ...
The retraction of a cylindrical rigid indenter from a viscoelastic substrate is studied by means of an efficient Green's function method. Hysteresis is observed in the load to area relationship in accordance with experimental results. Although our model relaxes many assumptions p ...
Graphene is well known as a solid lubricant for nanoscale devices and is generally used to decrease friction between flat surfaces. In this work, we investigate its performance as a lubricant for rough surfaces. To this end, the problem of a silicon tip sliding on a rough copper ...
It is well established that, at small loads, a linear relation exists between contact area and reduced pressure for elastic bodies with non-adhesive rough surfaces. In the case of adhesive contacts, however, there is not yet a general consensus on whether or not linearity still h ...
Experiments show that when an adhesive contact is subjected to a tangential load the contact area reduces, symmetrically or asymmetrically, depending on whether the contact is under tension or compression. What happens after the onset of sliding is more difficult to be assessed b ...
One of the effective potentials that has proven to be very versatile and useful for describing metals is the modified embedded atom method (MEAM) potential. The reference-free version of the MEAM (RF-MEAM) potential provides more flexibility for fitting than the 2NN-MEAM because ...
Although indentation of elastic bodies by self-affine rough indenters has been studied extensively, little attention has so far been devoted to plasticity. This is mostly because modeling plasticity as well as contact with a self-affine rough surface is computationally quite chal ...
During plastic deformation, metal surfaces roughen and this has a deleterious impact on their tribological performance. It is therefore desirable to be able to predict and control the amount of roughening caused by subsurface plasticity. As a first step, we focus on modelling pla ...

Plastic contact of self-affine surfaces

Persson's theory versus discrete dislocation plasticity

Persson's theory allows for a fast and effective estimate of contact area and contact stress distributions when a flat and a self-affine rough surface are pressed into contact. For elastic bodies, the results of the theory have been shown to be in very good agreement with rather ...
The contact mechanical response of various polymers is controlled by the viscoelastic behavior of their bulk and the adhesive properties of their interface. Due to the interplay between viscoelasticity and adhesion it is difficult to predict the contact response, even more when s ...
The relative contact area of rough surface contacts is known to increase linearly with reduced pressure, with proportionality factor κ. In its common definition, the reduced pressure contains the root-mean-square gradient (RMSG) of the surface. Although easy to measure, the RMSG ...