Over the past decades, ultrasound imaging has made considerable progress based on the advancement of imaging systems as well as transducer technology. With the need for advanced transducer arrays with complex designs and technical requirements, there is also a need for suitable t
...
Over the past decades, ultrasound imaging has made considerable progress based on the advancement of imaging systems as well as transducer technology. With the need for advanced transducer arrays with complex designs and technical requirements, there is also a need for suitable tools to characterize such transducers. However, despite the importance of acoustic characterization to assess the performance of novel transducer arrays, the characterization process of highly complex transducers might involve various manual steps, which are laborious, time-consuming, and subject to errors. These factors can hinder the full characterization of a prototype transducer, leading to an under-representation or inadequate evaluation. To come to an extensive, high-quality evaluation of a prototype transducer, the acoustic characterization of each transducer element is indispensable in both transmit and receive operations. In this paper, we propose a pipeline to automatically perform the acoustic characterization of a matrix transducer using a research imaging system. The performance of the pipeline is tested on a prototype matrix transducer consisting of 960 elements. The results show that the proposed pipeline is capable of performing the complete acoustic characterization of a high-element count transducer in a fast and convenient way.
@en