HM
H. Ma
6 records found
1
The tropospheric delay is one of many error sources that affect the Global Navigation Satellite System (GNSS) positioning solutions. The widely used troposphere models assume a homogeneous atmosphere so that only the zenith delay needs to be determined and is mapped through an el
...
The technology of integer ambiguity resolution-enabled precise-point-positioning (also referred to as PPP-AR) has been proven capable of providing comparable accuracy, efficiency, and productivity to long-baseline real-time kinematic positioning (RTK) during the last decade. Comm
...
Precise point positioning (PPP) is one of the well-known applications of Global Navigation Satellite System (GNSS) and provides precise positioning solutions using accurate satellite orbit and clock products. The tropospheric delay due to the neutral atmosphere for microwave sign
...
The benefits of an increased number of global navigation satellite systems (GNSS) in space have been confirmed for the robustness and convergence time of standard precise point positioning (PPP) solutions, as well as improved accuracy when (most of) the ambiguities are fixed. Yet
...
The water vapor content in the atmosphere can be reconstructed using the all-weather condition troposphere tomography technique. In common troposphere tomography, the water vapor of each voxel is represented by an unknown parameter. This means that when the desired spatial resolu
...
This contribution implements the Kriging interpolation in predicting the tropospheric wet delays using global navigation satellite system networks. The predicted tropospheric delays can be used in strengthening the precise point positioning models and numerical weather prediction
...