Urban drainage network models (UDNMs) have been widely used to facilitate flood management. Typically, a UDNM is developed using data from Geographic Information Systems (GIS), and hence it consists of many short pipes and connection nodes or manholes. To improve modeling efficie
...
Urban drainage network models (UDNMs) have been widely used to facilitate flood management. Typically, a UDNM is developed using data from Geographic Information Systems (GIS), and hence it consists of many short pipes and connection nodes or manholes. To improve modeling efficiency, a GIS-based model is generally skeletonized by removing many elements. However, there has been surprisingly a lack of knowledge on to what extent such skeletonization can affect the model's simulation accuracy, resulting in uncertainty in flood risk estimation. This paper makes the first attempt to quantitatively evaluate multidimensional impacts of different skeletonization levels on hydraulic properties of UDNMs. This goal is achieved by a new evaluation framework comprising of eight existing and new metrics that make use of hydrographs, main pipe hydraulics and flood distribution properties. A real-life UDNM is used to illustrate the new framework under various rainfall conditions and different skeletonization levels. The new framework is also used to compare the performance of two compensation methods in mitigating impacts caused by model skeletonization. Results obtained show that: (a) model skeletonization can significantly affect the magnitude of peak flow at the outfall, with a maximum overestimation of up to 20%, (b) hydraulics in main pipes can also be affected by model skeletonization with the maximum flow increasing up to 35%, and (c) model skeletonization may significantly alter the flood distribution properties which has been largely ignored in past studies. These findings provide guidance for UDNM skeletonization, where their associated impacts should be aware in engineering practice.
@en