Circular Image

7 records found

We introduce a framework for the control of discrete-time switched stochastic systems with uncertain distributions. In particular, we consider stochastic dynamics with additive noise whose distribution lies in an ambiguity set of distributions that are ɛ−close, in the Wasserstein ...
This paper builds Wasserstein ambiguity sets for the unknown probability distribution of dynamic random variables leveraging noisy partial-state observations. The constructed ambiguity sets contain the true distribution of the data with quantifiable probability and can be exploit ...
The aim of this paper is to compare two classes of structured ambiguity sets, which are data-driven and can reduce the conservativeness of their associated optimization problems. These two classes of structured sets, coined Wasserstein hyperrectangles and multi-transport hyperrec ...
This paper provides a data-driven solution to the problem of coverage control by which a team of robots aims to optimally deploy in a spatial region where certain event of interest may occur. This event is random and described by a probability density function, which is unknown a ...
We present a novel framework for formal control of uncertain discrete-time switched stochastic systems against probabilistic reach-avoid specifications. In particular, we consider stochastic systems with additive noise, whose distribution lies in an ambiguity set of distributions ...
This paper introduces a spectral parameterization of ambiguity sets to hedge against distributional uncertainty in stochastic optimization problems. We build an ambiguity set of probability densities around a histogram estimator, which is constructed by independent samples from t ...
Ambiguity sets of probability distributions are a prominent tool to hedge against distributional uncertainty in stochastic optimization. The aim of this paper is to build tight Wasserstein ambiguity sets for data-driven optimization problems. The method exploits independence betw ...