This article presents a microelectromechanical system (MEMS) Coriolis-based mass-flow-to-digital converter (Φ DC) that can be used with both liquids and gases. It consists of a micromachined Coriolis mass flow sensor and a CMOS interface circuit that drives it into oscillation and digitizes the resulting mass flow information. A phase-locked loop (PLL) drives the sensor at its resonance frequency (fD), while a low 1/f noise switched-capacitor (SC) proportional-integral (PI) controller maintains a constant drive amplitude. Mass flow through the sensor causes Coriolis-force-induced displacements, which are detected by co-integrated sense capacitors. In-phase (I) and quadrature (Q) components of these displacements are then digitized by two continuous-time delta-sigma modulators (CT- ΔΣ Ms) with finite impulse response (FIR)-DACs and passive mixers. Their outputs are used to accurately estimate and cancel sense path delay, thus improving sensor stability. To ensure constant sensitivity over a wide range of fluid densities, a background sensitivity tuning (BST) scheme adjusts the sense capacitors' bias voltage as a function of fD, which is a good proxy for fluid density. Implemented in a standard 0.18- μm CMOS technology, the interface circuit consumes 13 mW from a 1.8-V supply. The proposed MEMS Coriolis Φ DC achieves a state-of-the-art noise floor of 80 μg/h/√ Hz and a zero stability (ZS) of ±0.31 mg/h, which is at par with MEMS thermal flow sensors.
@en