KB

20 records found

In the context of kernel machines, polynomial and Fourier features are commonly used to provide a nonlinear extension to linear models by mapping the data to a higher-dimensional space. Unless one considers the dual formulation of the learning problem, which renders exact large-s ...
For the first time, this position paper introduces a fundamental link between tensor networks (TNs) and Green AI, highlighting their synergistic potential to enhance both the inclusivity and sustainability of AI research. We argue that TNs are valuable for Green AI due to their s ...
Kernel machines are one of the most studied family of methods in machine learning. In the exact setting, training requires to instantiate the kernel matrix, thereby prohibiting their application to large-sampled data. One popular kernel approximation strategy which allows to tack ...
This paper presents a method for approximate Gaussian process (GP) regression with tensor networks (TNs). A parametric approximation of a GP uses a linear combination of basis functions, where the accuracy of the approximation depends on the total number of basis functions M. We ...
Recent advancements in wearable EEG devices have highlighted the importance of accurate seizure detection algorithms, yet the ever-increasing size of the generated datasets poses a significant challenge to existing seizure detection methods based on kernel machines. Typically, th ...
The identification of symmetric tensor network MIMO Volterra models has been studied earlier via the computation of a Moore-Penrose pseudoinverse in tensor network form. The current state of the art requires the construction of a tensor network of a repeated Khatri-Rao product of ...
This paper proposes a Bayesian Volterra tensor network (TN) to solve high-order discrete nonlinear multiple-input multiple-output (MIMO) Volterra system identification problems. Using a low-rank tensor network to compress all Volterra kernels at once, we avoid the exponential gro ...
In recent years, the application of tensors has become more widespread in fields that involve data analytics and numerical computation. Due to the explosive growth of data, low-rank tensor decompositions have become a powerful tool to harness the notorious curse of dimensionality ...
Multiway data often naturally occurs in a tensorial format which can be approximately represented by a low-rank tensor decomposition. This is useful because complexity can be significantly reduced and the treatment of large-scale data sets can be facilitated. In this paper, we fi ...
Nonlinear parametric system identification is the estimation of nonlinear models of dynamical systems from measured data. Nonlinear models are parameterized, and it is exactly these parameters that must be estimated. Extending familiar linear models to their nonlinear counterpart ...
Tensor, a multi-dimensional data structure, has been exploited recently in the machine learning community. Traditional machine learning approaches are vector- or matrix-based, and cannot handle tensorial data directly. In this paper, we propose a tensor train (TT)-based kernel te ...
The estimation of an exponential number of model parameters in a truncated Volterra model can be circumvented by using a low-rank tensor decomposition approach. This low-rank property of the tensor decomposition can be interpreted as the assumption that all Volterra parameters ar ...

MERACLE

Constructive Layer-Wise Conversion of a Tensor Train into a MERA

In this article, two new algorithms are presented that convert a given data tensor train into either a Tucker decomposition with orthogonal matrix factors or a multi-scale entanglement renormalization ansatz (MERA). The Tucker core tensor is never explicitly computed but stored a ...
This article introduces the Tensor Network B-spline (TNBS) model for the regularized identification of nonlinear systems using a nonlinear autoregressive exogenous (NARX) approach. Tensor network theory is used to alleviate the curse of dimensionality of multivariate B-splines by ...
Sum-product networks (SPNs) constitute an emerging class of neural networks with clear probabilistic semantics and superior inference speed over other graphical models. This brief reveals an important connection between SPNs and tensor trains (TTs), leading to a new canonical for ...
We propose a new tensor completion method based on tensor trains. The to-be-completed tensor is modeled as a low-rank tensor train, where we use the known tensor entries and their coordinates to update the tensor train. A novel tensor train initialization procedure is proposed sp ...
An extension of the Tensor Network (TN) Kalman filter [2], [3] for large scale LTI systems is presented in this paper. The TN Kalman filter can handle exponentially large state vectors without constructing them explicitly. In order to have efficient algebraic operations, a low TN ...
A restricted Boltzmann machine (RBM) learns a probability distribution over its input samples and has numerous uses like dimensionality reduction, classification and generative modeling. Conventional RBMs accept vectorized data that dismiss potentially important structural inform ...
There has been growing interest in extending traditional vector-based machine learning techniques to their tensor forms. Support tensor machine (STM) and support Tucker machine (STuM) are two typical tensor generalization of the conventional support vector machine (SVM). However, ...
This article reformulates the multiple-input-multiple-output Volterra system identification problem as an extended Kalman filtering problem. This reformulation has two advantages. First, it results in a simplification of the solution compared to the Tensor Network Kalman filter a ...