Lv

L.M. van Koppen

4 records found

Tuning stability of titania-supported Fischer-Tropsch catalysts

Impact of surface area and noble metal promotion

Cobalt oxidation is a relevant deactivation pathway of titania-supported cobalt catalysts used in Fischer-Tropsch synthesis (FTS). To work towards more stable catalysts, we studied the effect of the surface area of the titania support and noble metal promotion on cobalt oxidation ...
Understanding the deactivation mechanism of cobalt-based Fischer-Tropsch catalysts is of significant practical importance. Herein, we explored the role of manganese as a structural promoter on silica-supported cobalt nanoparticles under simulated high CO conversion conditions, i. ...
The study of titania-supported cobalt nanoparticles is relevant for industrial Fischer-Tropsch synthesis (FTS). Herein, we report about various deactivation pathways of cobalt supported on P25 titania (cobalt loading 2–8 wt%) under simulated high conversion conditions using in si ...
The commercial application of cobalt-based Fischer-Tropsch synthesis (FTS) suffers from catalyst deactivation. One of the main deactivation mechanisms under industrial conditions is sintering. In this work, we explored the role of manganese oxide as a structural promoter against ...