JP

Jan-Pieter Paardekooper

7 records found

PRISMA

A novel approach for deriving probabilistic surrogate safety measures for risk evaluation

Surrogate Safety Measures (SSMs) are used to express road safety in terms of the safety risk in traffic conflicts. Typically, SSMs rely on assumptions regarding the future evolution of traffic participant trajectories to generate a measure of risk, restricting their applicability ...
The development of new assessment methods for the performance of automated vehicles is essential to enable the deployment of automated driving technologies, due to the complex operational domain of automated vehicles. One contributing method is scenario-based assessment in which ...
The development of assessment methods for the performance of Automated Vehicles (AVs) is essential to enable the deployment of automated driving technologies, due to the complex operational domain of AVs. One candidate is scenario-based assessment, in which test cases are derived ...
The safety assessment of Automated Vehicles (AVs) is an important aspect of the development cycle of AVs. A scenario-based assessment approach is accepted by many players in the field as part of the complete safety assessment. A scenario is a representation of a situation on the ...
The development of safety validation methods is essential for the safe deployment and operation of Automated Driving Systems (ADSs). One of the goals of safety validation is to prospectively evaluate the risk of an ADS dealing with real-world traffic. ISO 26262 and ISO/DIS 21448, ...
Scenario-based methods for the assessment of Automated Vehicles (AVs) are widely supported by many players in the automotive field. Scenarios captured from real-world data can be used to define the scenarios for the assessment and to estimate their relevance. Therefore, different ...

Safety assessment of automated vehicles

How to determine whether we have collected enough field data?

Objective: The amount of collected field data from naturalistic driving studies is quickly increasing. The data are used for, among others, developing automated driving technologies (such as crash avoidance systems), studying driver interaction with such technologies, and gaining ...