Due to the simplicity and flexibility of the structure of the Second-Order Generalized Integrator based Quadrature Signal Generator (SOGI-QSG), it has been widely used over the past decade for many applications such as frequency estimation, grid synchronization, and harmonic extr
...
Due to the simplicity and flexibility of the structure of the Second-Order Generalized Integrator based Quadrature Signal Generator (SOGI-QSG), it has been widely used over the past decade for many applications such as frequency estimation, grid synchronization, and harmonic extraction. However, the SOGI-QSG will produce errors when its input signal contains a dc component or harmonic components with unknown frequencies. The accuracy of the signal detection methods using it may hence be compromised. To overcome the drawback, the First-Order System (FOS) concept is first used to illustrate the principle of the SOGI-QSG, based on which, an improved Second-Order SOGI-QSG (SO-SOGI-QSG) is then proposed by referring the relationship of the standard FOS and the second-order system. The proposed SO-SOGI-QSG inherits the simplicity of the SOGI-QSG, while it has much stronger attenuation ability for both low- and high-frequency components. A detailed parameter design procedure for the SO-SOGI-QSG is provided in this paper as well. The effectiveness of the proposed SO-SOGI-QSG is finally validated by experimental results.
@en