LM

L.F. Magalhaes Pereira

12 records found

Although many aspects of the fracturing process of concrete are now well understood and successfully simulated with various models, it is still very difficult to properly simulate the different failure mechanisms observed in a concrete structure induced by ballistic impact. In th ...
This contribution presents a numerical study towards the propagation and branching of cracks in quasi-brittle materials, using a new effective rate-dependent damage model, enhanced by a stress-based nonlocal (SBNL) regularization scheme. This phenomenological model is mesh object ...
From a macroscopic point of view, the dynamic tensile response of concrete is mainly due to the viscous behavior of the bulk material and inertia effects at multi-scale levels. It has been suggested that almost all of these mechanisms have to be considered as intrinsic material p ...
Extraordinary actions such as blast loadings and high velocity impact are rare, but usually have devastating effects. Thus, making critical infrastructures, such as military and governmental facilities, power-plants, dams, bridges, hospitals, etc., more resilient against these ha ...
The development of realistic numerical tools to efficiently model the response of concrete structures subjected to close-in detonations and high velocity impact has been one of the major quests in defense research. Under these loading conditions, quasi-brittle materials undergo a ...
Stress-based nonlocal model, Damage, Rate dependency, Dynamic crack-branching Abstract. In concrete often complex fracture and fragmentation patterns develop when subjected to high straining loads. The proper simulation of the dynamic cracking process in concrete is crucial for g ...