Circular Image

D.J.N. Allaerts

18 records found

In this work, we investigate a method to derive characteristic dynamic flow field behavior from field measurements. We further explore how these changes impact the performance of a wind farm flow control strategy. For a long time, hourly to 10-min averaged data has been the predo ...

The multi-scale coupled model

A new framework capturing wind farm–atmosphere interaction and global blockage effects

The growth in the number and size of wind energy projects in the last decade has revealed structural limitations in the current approach adopted by the wind industry to assess potential wind farm sites. These limitations are the result of neglecting the mutual interaction of larg ...
As offshore wind farms grow in size, the blockage effect associated with the atmospheric gravity waves they trigger is expected to become more important. To model this, recent research has produced an Atmospheric Perturbation Model (APM), which simulates the mesoscale flow in the ...
Wind Farm Flow Control (WFFC) is the discipline of manipulating the flow between wind turbines to achieve a farm-wide goal, like power tracking, load mitigation, or power maximization. Specifically, steady-state control approaches have shown promising results in both theory and p ...
Accurately predicting wind turbine wake effects is essential for optimizing wind-farm performance and minimizing maintenance costs. This study explores the applicability of the Sparse Regression of Turbulent Stress Anisotropy (SpaRTA) framework to develop a simple yet robust Reyn ...
Dynamic wind farm flow control is the art and science to maximize the energy yield of large wind farms. In this paper we will address the problem of large time delays between control actions of the different turbines in the farm and the delayed impact on the downstream turbines. ...
The growing number and growing size of wind energy projects coupled with the rapid growth in high-performance computing technology are driving researchers toward conducting large-scale simulations of the flow field surrounding entire wind farms. This requires highly parallel-effi ...
In the context of large off-shore wind farms, power production is influenced greatly by the turbine array's interaction with the atmospheric boundary layer. One of the most influencing manifestations of such complex interaction is the increased level of shear stress observed with ...
The interaction of large wind farm clusters with the thermally stratified atmosphere has emerged as an important physical process that impacts the productivity of wind farms. Under stable conditions, this interaction triggers atmospheric gravity waves (AGWs) in the free atmospher ...
In recent years, the relevance of the interaction between neighboring wind farms has grown steadily. As one farm extracts energy from the wind, a downstream one can systematically experience lower wind speeds which threatens the economic viability of the farm. Significant progres ...
The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to microscale models for the use case of wind energy development and operation. ...
Reproducing realistic date- and site-specific unsteady wind conditions in large-eddy simulations is becoming increasingly useful in wind energy. How to run a large-eddy simulation to match observed conditions, however, remains an open research question. One approach that has rece ...
Vertical temperature profiles influence the wind power generation of large offshore wind farms through stability-dependent effects such as blockage and gravity waves. However, numerical tools that are used to model these effects are often computationally too expensive to cover th ...
This paper presents a new framework of the FLOw Redirection and Induction Dynamics (FLORIDyn) model. It is able to dynamically simulate the wake behaviour in wind farms under heterogeneous and changing environmental conditions at a low computational cost. The novelty of this work ...
Wind farm control methods allow for a more flexible use of wind power plants over the baseline operation. They can be used to increase the power generated, to track a reference power signal or to reduce structural loads on a farm-wide level. Model-based control strategies have th ...

The revised FLORIDyn model

Implementation of heterogeneous flow and the Gaussian wake

In this paper, a new version of the FLOw Redirection and Induction Dynamics (FLORIDyn) model is presented. The new model uses the three-dimensional parametric Gaussian FLORIS model and can provide dynamic wind farm simulations at a low computational cost under heterogeneous and c ...
To simulate the airflow through a wind farm across a wide range of atmospheric conditions, microscale models (e.g., large-eddy simulation, LES, models) have to be coupled with mesoscale models, because microscale models lack the atmospheric physical processes to represent time-va ...
Mesoscale-to-microscale coupling (MMC) aims to address the limited scope of traditional large-eddy simulations by driving the microscale flow with information concerning large-scale weather patterns provided by mesoscale models. We present a new offline MMC technique for horizont ...