Circular Image

M. Naderibeni

4 records found

Physics-Informed Neural Networks (PINNs) offer a promising approach to solving partial differential
equations (PDEs). In PINNs, physical laws are incorporated into the loss function, guiding the network to learn a model that adheres to these laws as defined by the PDEs. Train ...

Learning Reduced-Order Mappings between Functions

An Investigation of Suitable Inputs and Outputs

Data-driven approaches are a promising new addition to the list of available strategies for solving Partial Differential Equations (PDEs). One such approach, the Principal Component Analysis-based Neural Network PDE solver, can be used to learn a mapping between two function spac ...

Data Driven Approximations Of PDEs

On Robustness of Reduced Order Mappings between Function Spaces Against Noise

This paper presents a comprehensive exploration of a novel method combining Principal Component Analysis (PCA) and Neural Networks (NN) to efficiently solve Partial Differential Equations (PDEs), a fundamental challenge in modeling a wide range of real-world phenomena. Our resear ...

Learning Reduced Order Mappings of Navier-Stokes

An Investigation of Generalization on the Viscosity Parameter

Solving Partial Differential Equations (PDEs) in engineering such as Navier-Stokes is incredibly computationally expensive and complex. Without analytical solutions, numerical solutions can take ages to simulate at great expense. In order to reduce this cost, neural networks may ...