Ammonia is a promising fuel for decarbonizing the shipping industry, but its safety compared to traditional maritime fossil fuels remains questionable. As more projects explore ammonia-fueled vessels, safety concerns, particularly the acute toxicity and risks of ammonia release,
...
Ammonia is a promising fuel for decarbonizing the shipping industry, but its safety compared to traditional maritime fossil fuels remains questionable. As more projects explore ammonia-fueled vessels, safety concerns, particularly the acute toxicity and risks of ammonia release, are paramount. This research focused on the effects of accidental ammonia releases during ship-to-ship collisions, affecting ammonia tank integrity. We examined various release scenarios, considering factors like tank types and locations, breach sizes and positions, weather conditions, and dispersion patterns, using PHAST software for modeling. Results indicated that semipressurized tanks pose greater health risks on human health than fully refrigerated ones. Underwater releases are less hazardous, as a significant amount of ammonia dissolves before surfacing. Mitigation efforts, such as water curtains and containment basins, were evaluated for their effectiveness in minimizing the impact of ammonia releases. These measures significantly reduce risks to nearby populations but are less effective for crew safety onboard. This underscores the challenge of ensuring onboard safety in ammonia-fueled vessels, highlighting the need for innovative and effective safety design.
@en