Abstract: Syngas fermentation to ethanol has reached industrial production. Further improvement of this process would be aided by quantitative understanding of the influence of imposed reaction conditions on the fermentation performance. That requires a reliable model of the microbial kinetics. Data were collected from 37 steady states in chemostats and from many batch experiments that use Clostridium authoethanogenum. Biomass-specific rates from CO conversion experiments were related to each other according to simple reaction stoichiometries and the Pirt equation, with only the ratio of ethanol to acetate production remaining as degree of freedom. No clear dependency of this ratio on dissolved concentrations, such as CO or acetic acid concentration, was found. This is largely caused by the lack of knowledge about the dependency of the CO uptake rate (and hence all other rates) on the CO concentration. This knowledge gap is caused by a lack of dissolved CO measurements. For dissolved H2, a similar gap applies. Modelling H2 consumption adds more degrees of freedom to the system, so that more structured experiments with H2 is needed. The inhibition of gas consumption by acetate and ethanol is partly known but needs further study. Key points: • Set of Clostridium autoethanogenum syngas fermentation data from chemostats. • Unstructured kinetic models can relate most biomass-specific rates to dilution rates. • Lack of dissolved gas measurements limits deeper understanding.
@en