MG
M.I. Gerritsma
109 records found
1
In this work, we present a mass, energy, enstrophy and vorticity conserving (MEEVC) mixed finite element discretization for two-dimensional incompressible Navier-Stokes equations as an alternative to the original MEEVC scheme proposed in A. Palha and M. Gerritsma (2017) [5]. The
...
In this paper, we build on the work of Hughes and Sangalli (2007) dealing with the explicit computation of the Fine-Scale Greens’ function. The original approach chooses a set of functionals associated with a projector to compute the Fine-Scale Greens’ function. The construction
...
CO2 capture and storage is a viable solution in the effort to mitigate global climate change. Deep saline aquifers, in particular, have emerged as promising storage options, owing to their vast capacity and widespread distribution. However, the task of proficiently mon
...
In this work we use algebraic dual spaces with a domain decomposition method to solve the Darcy equations. We define the broken Sobolev spaces and their finite dimensional counterparts. A global trace space is defined that connects the solution between the broken spaces. Use of a
...
Several investigations have been undertaken to study the velocity and temperature fields associated with the thermal mixing between fluids, and resulting thermal striping in a T-junction. However, the available experimental databases are not sufficient to describe the involved ph
...
CO2 sequestration and storage in deep saline aquifers is a promising technology for mitigating the excessive concentration of the greenhouse gas in the atmosphere. However, accurately predicting the migration of CO2 plumes requires complex multi-physics-base
...
Structural mechanics is commonly modeled by (systems of) partial differential equations (PDEs). Except for very simple cases where analytical solutions exist, the use of numerical methods is required to find approximate solutions. However, for many problems of practical interest,
...
We introduce a mimetic dual-field discretization which conserves mass, kinetic energy and helicity for three-dimensional incompressible Navier-Stokes equations. The discretization makes use of a conservative dual-field mixed weak formulation where two evolution equations of veloc
...
In ℝn, let Λk(Ω) represent the space of smooth differential k-forms in Ω. The de Rham complex consists of a sequence of spaces, Λk(Ω), k = 0, 1…, n, connected by the exterior derivative, d: Λk(Ω) → Λk+1(Ω). Appropriately chos
...
We introduce a domain decomposition structure-preserving method based on a hybrid mimetic spectral element method for three-dimensional linear elasticity problems in curvilinear conforming structured meshes. The method is an equilibrium method which satisfies pointwise equilibriu
...
In this paper we present a discontinuous least-squares spectral element method for Stokes equations with primitive variable formulation on both smooth and non-smooth domains. We propose an exponentially accurate numerical scheme based on the stability estimates and implement it o
...
In this paper, we will show that the equivalence of a div-grad Neumann problem and a grad-div Dirichlet problem can be preserved at the discrete level in 3-dimensional curvilinear domains if algebraic dual polynomial representations are employed. These representations will be int
...
In this paper, we present a hybrid mimetic method which solves the mixed formulation of the Poisson problem on curvilinear quadrilateral meshes. The method is hybrid in the sense that the domain is decomposed into multiple disjoint elements and the interelement continuity is enfo
...
Given a sequence of finite element spaces which form a de Rham sequence, we will construct dual representations of these spaces with associated differential operators which connect these spaces such that they also form a de Rham sequence. The dual representations also need to sat
...
In this paper we will consider two curl-curl equations in two dimensions. One curl-curl problem for a scalar quantity F and one problem for a vector field E. For Dirichlet boundary conditions n× E= Ê⊣ on E and Neumann boundary conditions n×curlF=Ê⊣, we expect the solutions to sat
...
We present a hybrid mimetic spectral element formulation for Darcy flow. The discrete representations for (1) conservation of mass, and (2) inter-element continuity, are topological relations that lead to sparse matrix systems. These constraints are independent of the element siz
...
In this paper, we will use algebraic dual polynomials to set up a discrete Steklov-Poincaré operator for the mixed formulation of the Poisson problem. The method will be applied in curvilinear coordinates and to a test problem which contains a singularity. Exponential convergence
...
This work presents three methods for enforcing tangential velocity boundary conditions for the MEEVC scheme, which was shown to be mass, enstrophy, energy and vorticity conserving scheme in the case of inviscid flow [1]. While the normal velocity component can be strongly imposed
...
In this paper, an h∕p spectral element method with least-square formulation for parabolic interface problem will be presented. The regularity result of the parabolic interface problem is proven for non-homogeneous interface data. The differentiability estimates and the main stabi
...
A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange
...