Microbrachytherapy with radioactive holmium-166 (166Ho) microspheres (MS) has the potential to be an effective treatment method for brain malignancies. Direct intratumoural delivery of 166Ho-MS and dose coverage of the whole tumour are crucial requirements. However, currently no
...
Microbrachytherapy with radioactive holmium-166 (166Ho) microspheres (MS) has the potential to be an effective treatment method for brain malignancies. Direct intratumoural delivery of 166Ho-MS and dose coverage of the whole tumour are crucial requirements. However, currently no dedicated instruments for controlled intratumoural delivery exist. This study presents an administration device that facilitates this novel magnetic resonance imaging (MRI) -guided intervention. The bioceramic alumina oxide cannula creates a straight channel for a superelastic nitinol precurved stylet to control spatial deposition of Ho-MS. End-point accuracy of the stylet was measured during insertions in phantoms. Imaging tests were performed in a 3 Tesla MRI-scanner to quantify instrument-induced artefacts. Additionally, the feasibility of non-radioactive holmium-165 (165Ho)-MS delivery with the administration device was evaluated in a brain tumour simulant. Absolute stylet tip error was 0.88 ± 0.61 mm, instrument distortion in MRI depended on needle material and orientation and dose delivery of 165Ho-MS in a brain tumour phantom was possible. This study shows that the administration device can accurately place the stylet for injection of Ho-MS and that visualization can be performed with MRI.
@en