As the integration of renewable energy sources into the grid increases, the insulation systems of grid components such as transformers and switchgear encounter significant challenges due to the transients and harmonics generated by power-electronic-based converters. A test genera
...
As the integration of renewable energy sources into the grid increases, the insulation systems of grid components such as transformers and switchgear encounter significant challenges due to the transients and harmonics generated by power-electronic-based converters. A test generator capable of replicating these component stresses is essential to accurately evaluate these insulation systems under real-grid conditions. This paper proposes a modular cascaded H-bridge-based high-voltage arbitrary waveform generator, prototyped with three stages to generate customized waveforms (triangular, sawtooth, pulse, and complex) up to 8 kV. The H-bridge modules are designed using Si MOSFETs with a maximum blocking voltage of 4.5 kV. The input to the HV H-bridge module is provided by a 10 kV medium-frequency transformer, whose design is described with a focus on the insulation system and winding configuration. This transformer is driven by a zero-voltage switching driver. This arbitrary waveform generator excels in several aspects, including a straightforward design procedure, compact size, high voltage capability, ease of integration, and cost.@en