MB

M.M. Baumann

10 records found

We consider wave propagation problems that are modeled in the frequency-domain, and that need to be solved simultaneously for multiple frequencies within a fixed range. For this, a single shift-and-invert preconditioner at a so-called seed frequency is applied. The choice of the ...
In this work, we present a new numerical framework for the efficient solution of the time-harmonic elastic wave equation at multiple frequencies. We show that multiple frequencies (and multiple right-hand sides) can be incorporated when the discretized problem is written as a mat ...
In this paper we present a comparison study of three different frameworks of iterative Krylov methods that we have recently developed for the simultaneous numerical solution of frequency-domain wave propagation problems when multiple wave frequencies are present. The three approa ...
Seismic Full-Waveform Inversion is an imaging technique to better understand the earth's subsurface. Therefore, the reflection intensity of sound waves is measured in a field experiment and is matched with the results from a computer simulation in a least-squares sense. From a co ...
In the context of Galerkin discretizations of a partial differential equation (PDE), the modes of the classical method of proper orthogonal decomposition (POD) can be interpreted as the ansatz and trial functions of a low-dimensional Galerkin scheme. If one also considers a Galer ...
In this paper we present a comparison study for three different iterative Krylov methods that we have recently developed for the simultaneous numerical solution of wave propagation problems at multiple frequencies. The three approaches have in common that they require the applica ...
We consider wave propagation problems that are modeled in the frequency-domain, and that need to be solved simultaneously for multiple frequencies within a fixed range. For this, a single shift-and-invert preconditioner at a so-called seed frequency is applied. The choice of t ...
For the Full Waveform Inversion in frequency-domain, the fast numerical solution of the time-harmonic wave equation is required. For large three-dimensional problems, the problem size exceeds several million of unknowns, and a short-recurrence Krylov method such as IDR(s) is used ...