FH

Fabian Hoffmann

7 records found

Aerosol–cloud interactions modulate the role of clouds in Earth's climate. We derive, evaluate, and apply a simple model to understand aerosol-mediated cloud water adjustments in stratocumulus based on only two prognostic equations for the integrated cloud water L and droplet num ...
We explore the cloud system evolution of non-precipitating marine stratocumuli with a focus on the impacts of the diurnal cycle and free-tropospheric (FT) humidity based on an ensemble of 244 large-eddy simulations generated by perturbing initial thermodynamic profiles and aeroso ...
Stratocumulus occur in closed- or open-cell states, which tend to be associated with high or low cloud cover and the absence or presence of precipitation, respectively. Thus, the transition between these states has substantial implications for the role of this cloud type in Ea ...
The aerosol impact on liquid water path (LWP) is a key uncertainty in the overall climate impact of aerosol. However, despite a significant effort in this area, the size of the effect remains poorly constrained, and even the sign is unclear. Recent studies have shown that the rel ...
Data-driven quantification and parameterization of cloud physics in general, and of aerosol-cloud interactions in particular, rely on input data from observations or detailed simulations. These data sources have complementary limitations in terms of their spatial and temporal cov ...
The effect of anthropogenic aerosol on the reflectivity of stratocumulus cloud decks through changes in cloud amount is a major uncertainty in climate projections. In frequently occurring nonprecipitating stratocumulus, cloud amount can decrease through aerosol-enhanced cloud-top ...
Anthropogene Aerosole kühlen unser Klima, insbesondere durch ihre Wechselwirkungen mit Wolken. Die Kühlwirkung könnte jedoch schwächer ausfallen als bisher gedacht, weil sie über die Lebensdauer einer Wolke hinweg abnimmt.@en