FT

F. N. Teferle

4 records found

A Two-Step Feature Extraction Algorithm

Application to deep learning for point cloud classification

Most deep learning (DL) methods that are not end-to-end use several multi-scale and multi-type hand-crafted features that make the network challenging, more computationally intensive and vulnerable to overfitting. Furthermore, reliance on empirically-based feature dimensionality ...
Road surface extraction is crucial for 3D city analysis. Mobile laser scanning (MLS) is the most appropriate data acquisition system for the road environment because of its efficient vehicle-based on-road scanning opportunity. Many methods are available for road pavement, curb an ...
Semantic segmentation of point clouds is indispensable for 3D scene understanding. Point clouds have credibility for capturing geometry of objects including shape, size, and orientation. Deep learning (DL) has been recognized as the most successful approach for image semantic seg ...
Ground surface extraction is one of the classic tasks in airborne laser scanning (ALS) point cloud processing that is used for three-dimensional (3D) city modelling, infrastructure health monitoring, and disaster management. Many methods have been developed over the last three de ...