EB

Edo S. Boek

15 records found

Asphaltenes are known as the "cholesterol" of crude oil. They form nanoaggregates, precipitate, adhere to surfaces, block rock pores, and may alter the wetting characteristics of mineral surfaces within the reservoir, hindering oil recovery efficiency. Despite a significant resea ...
Asphaltenes are known as the 'cholesterol' of crude oil. They form nano-aggregates, precipitate, adhere to surfaces, block rock pores and may alter the wetting characteristics of mineral surfaces within the reservoir, hindering oil recovery efficiency. Despite a significant resea ...
We provide a review of our recent work on the development of a multi-scale simulation methodology to calculate the rheology and flow of wormlike micelles. There is a great need for understanding the link between the detailed chemistry of surfactants, forming wormlike micelles, an ...
We perform coarse-grained computer simulations of solutions of semidilute wormlike micelles and study their dynamic and rheological properties, both in equilibrium and under shear flow. The simulation model is tailored to the study of relatively large time and length scales (micr ...
Recently there has been a great deal of attention, from researchers both in academia and in industry, focused on the rheological properties of solutions of viscoelastic wormlike micelles formed by surfactants. It is particularly vital to understand the properties of these solutio ...
The aggregation and deposition of colloidal asphaltene in reservoir rock is a significant problem in the oil industry. To obtain a fundamental understanding of this phenomenon, we have studied the deposition and aggregation of colloidal asphaltene in capillary flow by experiment ...
Viscoelastic wormlike micelles are formed by surfactants assembling into elongated cylindrical structures. These structures respond to flow by aligning, breaking and reforming. Their response to the complex flow fields encountered in porous media is particularly rich. Here we use ...

Deposition of colloidal asphaltene in capillary flow

Experiments and mesoscopic simulation

The aggregation and deposition of colloidal asphaltene in reservoir rock is a significant problem in the oil industry. To obtain a fundamental understanding of this phenomenon, we have studied the deposition and aggregation of colloidal asphaltene in capillary flow by experiment ...

Flow of entangled wormlike micellar fluids

Mesoscopic simulations, rheology and μ-PIV experiments

There is a great need for understanding the relationship between the structure and chemistry of surfactants forming wormlike micelles, and their macroscopic flow properties. Available macroscopic Rheological Equations of State (REoS) are often inadequate to predict flow behaviour ...
We use simulations to predict the stability and mechanical properties of two amphiphilic bilayer membranes. We carry out atomistic MD simulations and investigate whether it is possible to use an existing coarse-grained (CG) surfactant model to map the membrane properties. We find ...
There is a great need for understanding the link between the detailed chemistry of surfactants, forming wormlike micelles, and their macroscopic rheological properties. In this paper we show how this link may be explored through particle simulations. First we review an existing b ...

Constitutive equations for extensional flow of wormlike micelles

Stability analysis of the Bautista-Manero model

We carry out a stability analysis of the Bautista-Manero (B-M) constitutive equations for extensional flow of wormlike micelles. We show that all solutions for the steady-state extensional viscosity ηE are unstable when the elongational rates ε exceed some critical value. In some ...
We study the recombination kinetics and stress relaxation in a generic reversible polymer model, which is believed to resemble a wormlike micellar system. We find evidence that, at high concentrations, the recombination kinetics in this model cannot be described by a mean-field a ...
We study the influence of shear flow on the formation of rings in a generic reversible polymer (FENE-C) model, representative for wormlike micelles. Under equilibrium conditions, rings are dominating in dilute solutions, while linear chains are dominating in strongly overlapping ...