LiLuSiO4:Ce and LiLuSiO4:Ce, Tm show very efficient charge carrier storage properties upon beta irradiation after samples have received treatment in vacuum. They outperform the commercial storage phosphor BaFBr(I):Eu2+ in many aspects. The influen
...
LiLuSiO4:Ce and LiLuSiO4:Ce, Tm show very efficient charge carrier storage properties upon beta irradiation after samples have received treatment in vacuum. They outperform the commercial storage phosphor BaFBr(I):Eu2+ in many aspects. The influence of the synthesis conditions, Ce and Tm concentration, nonstoichiometry and codoping with Ca, Hf, Al and Ge are reported. Based on the results of the synthesis optimization, thermoluminescence (TL) emission and TL excitation spectra a mechanism of charge carrier transfer, storage, and recombination during irradiation and thermal or optical readout is proposed.
@en