VM
Volker Markl
18 records found
1
Window aggregation is a core operation in data stream processing. Existing aggregation techniques focus on reducing latency, eliminating redundant computations, or minimizing memory usage. However, each technique operates under different assumptions with respect to workload chara
...
Machine learning (ML) pipelines for model training and validation typically include preprocessing, such as data cleaning and feature engineering, prior to training an ML model. Preprocessing combines relational algebra and user-defined functions (UDFs), while model training uses
...
Evaluating modern stream processing systems in a reproducible manner requires data streams with different data distributions, data rates, and real-world characteristics such as delayed and out-of-order tuples. In this paper, we present an open source stream generator which genera
...
Window aggregation is a core operation in data stream processing. Existing aggregation techniques focus on reducing latency, eliminating redundant computations, and minimizing memory usage. However, each technique operates under different assumptions with respect to workload char
...
Muses
Distributed data migration system for polystores
Large datasets can originate from various sources and are being stored in heterogeneous formats, schemas, and locations. Typical data science tasks need to combine those datasets in order to increase their value and extract knowledge. This is done in various data processing syste
...
The need for scalable and efficient stream analysis has led to the development of many open-source streaming data processing systems (SDPSs) with highly diverging capabilities and performance characteristics. While first initiatives try to compare the systems for simple workloads
...
Scotty
Efficient window aggregation for out-of-order stream processing
Computing aggregates over windows is at the core of virtually every stream processing job. Typical stream processing applications involve overlapping windows and, therefore, cause redundant computations. Several techniques prevent this redundancy by sharing partial aggregates amo
...
Real-time sensor data enables diverse applications such as smart metering, traffic monitoring, and sport analysis. In the Internet of Things, billions of sensor nodes form a sensor cloud and offer data streams to analysis systems. However, it is impossible to transfer all availab
...
In our data-centric society, online services, decision making, and other aspects are increasingly becoming heavily dependent on trends and patterns extracted from data. A broad class of societal-scale data management problems requires system support for processing unbounded data
...
BlockJoin
Efficient Matrix Partitioning Through Joins
Linear algebra operations are at the core of many Machine Learning (ML) programs. At the same time, a considerable amount of the effort for solving data analytics problems is spent in data preparation. As a result, end-to- end ML pipelines often consist of (i) relational operator
...
Emma in action
Declarative Dataflows for scalable data analysis
Parallel dataow APIs based on second-order functions were originally seen as a exible alternative to SQL. Over time, however, their complexity increased due to the number of physical aspects that had to be exposed by the underlying engines in order to facilitate efficient executi
...
Bridging the Gap
Towards optimization across linear and relational Algebra
Advanced data analysis typically requires some form of preprocessing in order to extract and transform data before processing it with machine learning and statistical analysis techniques. Pre-processing pipelines are naturally expressed in dataflow APIs (e.g., MapReduce, Flink, e
...
Cutty
Aggregate sharing for user-defined windows
Aggregation queries on data streams are evaluated over evolving and often overlapping logical views called windows. While the aggregation of periodic windows were extensively studied in the past through the use of aggregate sharing techniques such as Panes and Pairs, little to no
...
Parallel collection processing based on second-order functions such as map and reduce has been widely adopted for scalable data analysis. Initially popularized by Google, over the past decade this programming paradigm has found its way in the core APIs of parallel dataflow engine
...
The appeal of MapReduce has spawned a family of systems that implement or extend it. In order to enable parallel collection processing with User-Defined Functions (UDFs), these systems expose extensions of the MapReduce programming model as library-based dataow APIs that are tigh
...
Over the past years, parallel dataflow systems have been employed for advanced analytics in the field of data mining where many algorithms are iterative. These systems typically provide fault tolerance by periodically checkpointing the algorithm's state and, in case of failure, r
...
Apache Flink™
Stream and Batch Processing in a Single Engine
Apache Flink is an open-source system for processing streaming and batch data. Flink is built on the philosophy that many classes of data processing applications, including real-time analytics, continuous data pipelines, historic data processing (batch), and iterative algorithms
...