Additive manufacturing (AM) has recently been introduced as a reliable technique for the fabrication of highly complex geometries that were not possible before. Due to the flexibility in the organization of material properties such as responsive elements in space, AM is now a cap
...
Additive manufacturing (AM) has recently been introduced as a reliable technique for the fabrication of highly complex geometries that were not possible before. Due to the flexibility in the organization of material properties such as responsive elements in space, AM is now a capable technology for the production of smart structures that can transform their geometry, for example, from a compact state to a deployed configuration. Among others, fused deposition modeling (FDM) can reliably be used to manufacture polymeric constructs with high resolution. Polylactide (PLA), the most popular polymer in FDM printing is a shape-memory polymer. Therefore, the manufacturing of shape-transforming constructs can be simplified to the construction of foldable products that can be programmed simply by applying mechanical forces. Origami can then be used as a simple platform in which the shape-transforming of a programmed construct is via the folding of material through the thinner sections (hinges). Herein, PLA and FDM are used to fabricate foldable structures. The effects of different parameters namely total thickness, layer height, nozzle temperature, and activation temperature on the shape recovery of the manually programmed origami structures are then investigated.
@en