SZ

5 records found

The problem of 2D instantaneous ego-motion estimation for vehicles equipped with automotive radars is studied. To leverage multi-dimensional radar point clouds and exploit point features automatically, without human engineering, a novel approach is proposed that transforms ego-mo ...
The problem of estimating the 3D ego-motion velocity using multi-channel FMCW radar sensors has been studied. For the first time, the problem of ego-motion estimation is treated using radar raw signals. A robust algorithm using multi-channel FMCW radar sensors to instantly determ ...

DeepEgo

Deep Instantaneous Ego-Motion Estimation Using Automotive Radar

The problem of instantaneous ego-motion estimation with mm-wave automotive radar is studied. DeepEgo, a deep learning-based method, is proposed for achieving robust and accurate ego-motion estimation. A hybrid approach that uses neural networks to extract complex features from in ...
Linked to the increasing availability of datasets for radar-based human activity recognition (HAR), in this Student Highlights contribution, we report on a classification project that a group of 23 graduate students performed at TU Delft. The students were asked to work in groups ...
Unconstrained human activities recognition with a radar network is considered. A hybrid classifier combining both convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for spatial–temporal pattern extraction is proposed. The 2-D CNNs (2D-CNNs) are first applie ...