The need for zero emission drive is a global necessity that can contribute to mitigate greenhouse gas emissions. In this context, fuel cell hybrid electric vehicles are increasingly attracting interest by governments, companies and academia. While parked they can operate as power
...
The need for zero emission drive is a global necessity that can contribute to mitigate greenhouse gas emissions. In this context, fuel cell hybrid electric vehicles are increasingly attracting interest by governments, companies and academia. While parked they can operate as power generation units, given the proper connection to the electricity grid via vehicle-to-grid integration (V2G), or even power appliances directly (Vehicle-to-Load, V2L). In this study, we analysed the use of a hydrogen fuel cell electric scooter in combined driving, V2G and V2L mode. V2G resulted in the most efficient mode of the three, while V2L led to higher degradation rates. The measured average cell voltage degradation rate was 209 μV/h for driving mode, 356 μV/h for V2G and 648 μV/h for V2L. The insights provided in this study are useful to develop new, optimized and specifically targeted energy management systems for power generation of hydrogen hybrid electric drive vehicles.@en