YN

Y. Ni

27 records found

Peroxygenases offer an attractive means to address challenges in selective oxyfunctionalization chemistry. Despite this, their application in synthetic chemistry remains challenging due to their facile inactivation by the stoichiometric oxidant H2O2. Often a ...
Alcohol dehydrogenases are well-established catalysts for various reduction reactions. However, the reduction of carboxylic acid derivatives has not yet been reported with these enzymes. In this contribution, we demonstrated that carboxylic acid thioesters could be readily reduce ...
Peroxygenases are very promising catalysts for oxyfunctionalization reactions. Their practical applicability, however, is hampered by their sensitivity against the oxidant (H2O2), therefore necessitating in situ generation of H2O2. Here ...
Photosynthesis may be described as light-driven oxidation of water and subsequent use of the generated reducing equivalents to fix CO2 and synthesize higher energy organic compounds, such as carbohydrates. The transposition of the sustainable and atom-efficient strateg ...
Oxidoreductases are promising catalysts for organic synthesis. To sustain their catalytic cycles they require efficient supply with redox equivalents. Today classical biomimetic approaches utilizing natural electron supply chains prevail but artificial regeneration approaches bea ...
Peroxygenases catalyze a broad range of (stereo)selective oxyfunctionalization reactions. However, to access their full catalytic potential, peroxygenases need a balanced provision of hydrogen peroxide to achieve high catalytic activity while minimizing oxidative inactivation. He ...
The peroxygenase from Agrocybe aegerita (AaeUPO) has been evaluated for stereoselective oxyfunctionalization chemistry under non-aqueous reaction conditions. The stereoselective hydroxylation of ethylbenzene to (R)-1-phenylethanol was performed in neat substrate as reaction mediu ...