FV

F. Versluis

9 records found

Authored

Low-molecular-weight hydrogels are attractive scaffolds for drug delivery applications because of their modular and facile preparation starting from inexpensive molecular components. The molecular design of the hydrogelator results in a commitment to a particular release strat ...

Herein, the micropatterning of supramolecular gels with oriented growth direction and controllable spatial dimensions by directing the self-assembly of small molecular gelators is reported. This process is associated with an acid-catalyzed formation of gelators from two solubl ...

The work presented here shows that the growth of supramolecular hydrogel fibers can be spatially directed at the nanoscale by catalytic negatively charged nanoparticles (NCNPs). The NCNPs with surfaces grafted with negatively charged polymer chains create a local proton gradie ...

Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organo ...

A generic method is used for compartmentalization of supramolecular hydrogels by using water-in-water emulsions based on aqueous multi-phase systems (AMPS). By forming the low-molecular-weight hydrogel throughout all phases of all-aqueous emulsions, distinct, micro-compartment ...

Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of l ...

ConspectusOne often thinks of catalysts as chemical tools to accelerate a reaction or to have a reaction run under more benign conditions. As such, catalysis has a role to play in the chemical industry and in lab scale synthesis that is not to be underestimated. Still, the rol ...

In this contribution we show that biological membranes can catalyze the formation of supramolecular hydrogel networks. Negatively charged lipid membranes can generate a local proton gradient, accelerating the acid-catalyzed formation of hydrazone-based supramolecular gelators ...

In recent years, we have developed a low molecular weight hydrogelator system that is formed in situ under ambient conditions through catalysed hydrazone formation between two individually non-gelating components. In this contribution, we describe a molecular toolbox based on thi ...