Boundary integral equation methods for analyzing electromagnetic scattering phenomena typically suffer from several of the following shortcomings: 1) ill-conditioning when the frequency is low; 2) ill-conditioning when the discretization density is high; 3) ill-conditioning when the structure contains global loops (which are computationally expensive to detect); 4) incorrect solution at low frequencies due to a loss of significant digits; and 5) the presence of spurious resonances. In this article, quasi-Helmholtz projectors are leveraged to obtain magnetic field integral equation (MFIE) that is immune to drawbacks 1)-4). Moreover, when this new MFIE is combined with a regularized electric field integral equation (EFIE), a new quasi-Helmholtz projector-combined field integral equation (CFIE) is obtained that also is immune to 5). The numerical results corroborate the theory and show the practical impact of the newly proposed formulations.
@en