MF
Moritz Flaschel
8 records found
1
When the elastic properties of structured materials become direction-dependent, the number of their descriptors increases. For example, in two-dimensions, the anisotropic behavior of materials is described by up to 6 independent elastic stiffness parameters, as opposed to only 2
...
We propose an automated computational algorithm for simultaneous model selection and parameter identification for the hyperelastic mechanical characterization of biological tissue and validate it on experimental data stemming from human brain tissue specimens. Following the motiv
...
We extend the scope of our recently developed approach for unsupervised automated discovery of material laws (denoted as EUCLID) to the general case of a material belonging to an unknown class of constitutive behavior. To this end, we leverage the theory of generalized standard m
...
We extend EUCLID, a computational strategy for automated material model discovery and identification, to linear viscoelasticity. For this case, we perform a priori model selection by adopting a generalized Maxwell model expressed by a Prony series, and deploy EUCLID for identific
...
Bayesian-EUCLID
Discovering hyperelastic material laws with uncertainties
Within the scope of our recent approach for Efficient Unsupervised Constitutive Law Identification and Discovery (EUCLID), we propose an unsupervised Bayesian learning framework for discovery of parsimonious and interpretable constitutive laws with quantifiable uncertainties. As
...
We propose an approach for data-driven automated discovery of material laws, which we call EUCLID (Efficient Unsupervised Constitutive Law Identification and Discovery), and we apply it here to the discovery of plasticity models, including arbitrarily shaped yield surfaces and is
...
NN-EUCLID
Deep-learning hyperelasticity without stress data
We propose a new approach for unsupervised learning of hyperelastic constitutive laws with physics-consistent deep neural networks. In contrast to supervised learning, which assumes the availability of stress–strain pairs, the approach only uses realistically measurable full-fiel
...
We propose a new approach for data-driven automated discovery of isotropic hyperelastic constitutive laws. The approach is unsupervised, i.e., it requires no stress data but only displacement and global force data, which are realistically available through mechanical testing and
...